Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Assessment of the Core Barrel During Loss of Coolant Accident

[+] Author Affiliations
Yaroslav Dubyk, Vladislav Filonov, Oleksii Ishchenko, Yuliia Filonova

IPP-CENTRE, Ltd., Kiev, Ukraine

Igor Orynyak

National Academy of Sciences of Ukraine, Kiev, Ukraine

Paper No. PVP2018-84762, pp. V004T04A035; 10 pages
  • ASME 2018 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Prague, Czech Republic, July 15–20, 2018
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5165-4
  • Copyright © 2018 by ASME


This article focuses on the dynamic behavior of the Pressurized Water Reactor (PWR) during the Loss Of Coolant Accident (LOCA) which cause the significant acoustic loads on the Core Shrouds. The finite element analysis of a PWR was performed to obtain the acoustic response to the LOCA event. We have performed dynamic stress and strain calculations in the frequency domain for the Core Barrel, according to classical shell theories. The Duhamel integral was used to calculate the transient response of a shell to the transient load caused by the water hammer event. The results obtained were used for fracture mechanics evaluations for flaws, which may occur between inservice inspections.

Copyright © 2018 by ASME
Topics: Coolants , Accidents



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In