0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Hypervelocity Impacts Using Smoothed Particle Hydrodynamics

[+] Author Affiliations
M. Ganser, B. van der Linden, C. G. Giannopapa

Eindhoven University of Technology, Eindhoven, Netherlands

Paper No. PVP2018-84609, pp. V004T04A025; 8 pages
doi:10.1115/PVP2018-84609
From:
  • ASME 2018 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Prague, Czech Republic, July 15–20, 2018
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5165-4
  • Copyright © 2018 by ASME

abstract

Hypervelocity impacts occur in outer space where debris and micrometeorites with a velocity of 2 km/s endanger spacecraft and satellites. A proper shield design, e.g. a laminated structure, is necessary to increase the protection capabilities. High velocities result in massive damages. The resulting large deformations can hardly be tackled with mesh based discretization methods. Smoothed Particle Hydrodynamics (SPH), a Lagrangian meshless scheme, can resolve large topological changes whereas it still follows the continuous formulation. Derived by variational principles, SPH is able to capture large density fluctuations associated with hypervelocity impacts correctly. Although the impact region is locally limited, a much bigger domain has to be discretized because of strong outgoing pressure waves. A truncation of the computational domain is preferable to save computational power, but this leads to artificial reflections which influence the real physics. In this paper, hypervelocity impact (HVI) is modelled by means of basic conservation assumptions leading to the Euler equations of fluid dynamics accompanied by the Mie-Grueneisen equation of state. The newly developed simulation tool SPHlab presented in this work utilizes the discretization method smoothed particle hydrodynamics (SPH) to capture large deformations. The model is validated through a number of test cases. Different approaches are presented for non-reflecting boundaries in order to tackle artificial reflections on a computational truncated domain. To simulate an HVI, the leading continuous equations are derived and the simulation tool SPHlab is developed. The method of characteristics allows to define proper boundary fluxes by removing the inwards travelling information. One- and two-dimensional model problems are examined which show excellent absorption behaviour. An hypervelocity impact into a laminated shield is simulated and analysed and a simple damage model is introduced to model a spallation failure mode.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In