Full Content is available to subscribers

Subscribe/Learn More  >

A Proposed Guideline for Applying Waterhammer Predictions Under Transient Cavitation Conditions: Part 2 — Imbalanced Forces

[+] Author Affiliations
Matthew Stewart, Greg Wunderlich

AECOM Management Services, Greenwood Village, CO

Trey W. Walters

Applied Flow Technology, Colorado Springs, CO

Paper No. PVP2018-84339, pp. V004T04A023; 7 pages
  • ASME 2018 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Prague, Czech Republic, July 15–20, 2018
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5165-4
  • Copyright © 2018 by ASME


Waterhammer analysis (herein referred to as Hydraulic Transient Analysis or simply “HTA”) becomes more complicated when transient cavitation occurs (also known as liquid column separation). This complication is exacerbated when trying to predict imbalanced forces as this often involves comparing pressure times area (“PxA”) forces at two locations (for example at elbow pairs). Whereas the pressure at each elbow location has increased uncertainty because of transient cavitation, the difference in PxA forces at elbow pairs involves subtracting one potentially uncertain pressure from another uncertain pressure. Exacerbating this uncertainty yet further, the existence of vapor in a liquid system can dramatically affect the fluid wavespeed and, hence, the timing of the pressure wave travel between two locations such as elbow pairs; so the pressure calculated at each location would not actually occur at exactly the same time.

This Part 2 discusses methods of accounting for uncertainty in HTA imbalanced force predictions due to cavitation. The criteria in this paper assume that cavitation in the HTA has been assessed and accepted per the criteria in Part 1 of this paper.

A guideline is proposed for accepting and applying such results and, in particular, makes recommendations on safety factors to use in pipe stress analysis for different cases. The specific recommendations depend on numerous factors including:

• Presence or absence of cavitation in hydraulically connected or isolated parts of the system

• If cavitation occurs, whether the peak forces occur before or after cavitation first occurs

• Size of the cavitation vapor volumes with respect to the computing volumes

• Use of point forces as a conservative substitute in place of potentially less certain elbow pair forces or the manual assessment of maximum envelope values for the force.

Situations are discussed where waterhammer abatement is recommended to reduce hydraulic transient forces, and for increasing confidence in HTA results in specific cases. The result is a proposed comprehensive and pragmatic guideline which practicing engineers can use to perform waterhammer analysis and apply imbalanced force predictions to pipe stress analysis.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In