Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Elbow Flow Dynamics Using Correlated Wall Pressure Data

[+] Author Affiliations
André Baramili, Loïc Ancian

VibraTec, Ecully, France

Ludovic Chatellier, Laurent David

University of Poitiers, Poitiers, France

Paper No. PVP2018-84712, pp. V004T04A013; 10 pages
  • ASME 2018 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Prague, Czech Republic, July 15–20, 2018
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5165-4
  • Copyright © 2018 by ASME


The present study focuses on the analysis of the flow-induced vibration phenomenon typically encountered on piping systems containing an elbow. The correlation between the turbulent flow through the elbow and the dynamic forcing it yields on the piping walls was assessed experimentally. A closed water loop containing a transparent elbow was designed in order to develop fully turbulent duct flow condition. Particle Image Velocimetry (PIV) was applied in the transparent zone in order to provide unsteady data on the flow dynamics through the elbow; simultaneously, wall pressure fluctuations were measured on and around the elbow. Several flow configurations were tested in order to obtain a large coupled database linking the flow features to the resulting dynamic excitation on the walls. Finally, Partial Least Square Regression (PLSR) was applied in order to harvest the correlated information contained in multiple pressure signals at multiple time-delays and build a relationship capable of estimating the temporal evolution of the velocity field using a set of measured wall pressure signals.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In