0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Acoustic-Structure Interaction by Using Finite Element Analysis in Reactor Pressure Vessel of PWR

[+] Author Affiliations
Koji Maeta, Keisuke Matsuyama, Hideyuki Morita, Akihisa Iwasaki

Mitsubishi Heavy Industries, Ltd., Takasago, Japan

Hirokazu Sugiura

Mitsubishi Heavy Industries, Ltd., Hyogo, Japan

Shigeyuki Watanabe

Mitsubishi Heavy Industries, Ltd., Tokyo, Japan

Yoshito Nishikawa

Kansai Electric Power Co., Inc., Osaka, Japan

Paper No. PVP2018-84496, pp. V004T04A007; 9 pages
doi:10.1115/PVP2018-84496
From:
  • ASME 2018 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Prague, Czech Republic, July 15–20, 2018
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5165-4
  • Copyright © 2018 by ASME

abstract

The reactor coolant pump (RCP) in a pressurized water reactor (PWR) plant generates pressure pulsations at multiple frequencies. These pressure pulsations excite the acoustic modes inside the reactor vessel (RV), and cause significant acoustic loads on the reactor internals (RIs). For verifying the structural integrity of the RIs, it is important to predict the acoustic loads, which is used for vibration analysis of the RIs. Traditionally, an analytical method, assuming that structures are rigid, has been used in order to predict the acoustic pressure distributions inside the RV [1]. However, water in actual PWR plant is heavy enough to influence structural response, so that it is required to use methods for a coupled structural acoustic system.

In this article, the coupled structural-acoustic analysis using the commercial software ANSYS is proposed in order to predict the acoustic loads, and the applicability of this method is discussed. The structural-acoustic interactions inside the RV are investigated by element tests and the scale model test. The acoustic pressures measured by these tests are compared with the calculated results.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In