Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Fatigue Life Evaluation With Experimental Results for Type III Accumulators

[+] Author Affiliations
Sang-Won Kim, Nobuhiro Yoshikawa

University of Tokyo, Tokyo, Japan

Hiroshi Kobayashi, Toshiro Fujisawa

Japan Petroleum Energy Center, Tokyo, Japan

Takeru Sano

High Pressure Gas Safety Institute of Japan, Tokyo, Japan

Paper No. PVP2018-84188, pp. V03BT03A002; 8 pages
  • ASME 2018 Pressure Vessels and Piping Conference
  • Volume 3B: Design and Analysis
  • Prague, Czech Republic, July 15–20, 2018
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5163-0
  • Copyright © 2018 by ASME


Composite Reinforced Accumulator (CRA) is widely used in hydrogen stations. A high-cost pressure cycle test is mandatory to ensure the safety of accumulator in present regulations. To reduce the high cost, the aim is to develop a methodology of numerical fatigue life prediction of CRA with results of pressure cycle tests.

An axisymmetric finite element model for the Type III accumulator is created and actual loading process including autofrettage pressure is simulated. Stress amplitude caused by pressure cycle is evaluated based on the instructions in KD-3 of ASME BPVC VIII 3-2015. By comparing stress amplitude distributions with the leak positions after the pressure cycle test, and plotting the results in the design fatigue curve, it could be shown that fatigue life prediction of Type III accumulator can be done by precise finite element analysis of the liner including dome part, where the principal axes of stress change in pressure cycle.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In