Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Wettability on Capillary Flow of Non-Newtonian Fluid in Microchannels

[+] Author Affiliations
Kiarash Keshmiri, Neda Nazemifard

University of Alberta, Edmonton, AB, Canada

Haibo Huang

InnoTech Alberta, Edmonton, AB, Canada

Paper No. FEDSM2018-83533, pp. V003T21A012; 6 pages
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME


In this study, capillary filling of diluted bitumen was evaluated using glass etched microchannel. Glass microchannel was treated using Trichloro(1H,1H,2H,2H-perfluorooctyl) silane that makes the microchannel lyophobic (not favorable for neither hydrophilic nor hydrophobic liquids). Water contact angle, as a degree of hydrophilicity, was changed from 15° for untreated microchannel to 115° for treated microchannel. Measured Capillary filling speed of bitumen in hexane (10% to 60%) was experimentally monitored using white light microscope and compared with Washburn theoretical model. For all samples, a linear relation between square of propagation distance and time was found. However, a deviation between experimental and theoretical values of penetration as a function of time was recorded. Experimental results indicated slower velocity compared to theoretical prediction due to simplifications of the Washburn model. Advancing dynamic contact angle of capillary-driven flow was measured and compared with static contact angle using MATLAB®. It was found that dynamic contact angle was increasing during the penetration in microchannel and application of a constant contact angle leads to higher deviation between experimental and theoretical results.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In