Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Dielectrophoretic Particle Separation

[+] Author Affiliations
B. Kazemi, J. Darabi

Southern Illinois University Edwardsville, Edwardsville, IL

Paper No. FEDSM2018-83413, pp. V003T21A007; 5 pages
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME


This study presents the numerical simulation and optimization of a dielectrophoretic bio-separation chip for isolating bioparticles such as circulating tumor cells (CTCs). The chip consists of ten pairs of electrodes placed with an angle of 10° with respect to the direction of the flow on the top and bottom walls of the channel. The spatially non-uniform electric field produced by the slanted electrodes applies a repulsive force on the particles that are flowing through the channel. The repulsive force applied by the top and bottom electrodes are balanced and the particles flow along the centerline of the channel. On the other hand, the magnitude of forces resulted from electric field in the x and z-directions deflects particles depending on their size and guides them towards different outlets. Numerical simulation of the particle-fluid transport was performed using an open-source software named OpenFOAM and the deflection of the particles within the microfluidic channel was predicted. The present computational domain considers the dominant forces such as dielectrophoretic and hydrodynamic forces as well as their effects on the design and operating parameters of the chip. The results show that this device is capable of separating various cells based on their size.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In