0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Liquid Cooling Through Shallow Copperclad Cavities With Etched Pin-Fin Arrays

[+] Author Affiliations
Yin Lam, Nicole Okamoto, Younes Shabany, Sang-Joon John Lee

San José State University, San José, CA

Paper No. FEDSM2018-83265, pp. V003T21A005; 9 pages
doi:10.1115/FEDSM2018-83265
From:
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME

abstract

Heat removal is an increasing engineering challenge for higher-density packaging of circuit components. Microchannel heat sinks with liquid cooling have been investigated to take advantage of high surface-to-volume ratio and higher heat capacity of liquids relative to gases. This study experimentally investigated heat removal by liquid cooling through shallow copperclad cavities with staggered pin-fin arrays. Cavities with pin-fins were fabricated by chemical etching of a copperclad layer (nominally 105 μm thick) on a printed-circuit substrate (FR-4). The overall etched cavity was 30 mm wide, 40 mm long, and 0.1 mm deep. The pins were 1.1 mm in diameter and were distributed in a staggered arrangement. The cavity was sealed with a second copperclad substrate using an elastomer gasket. This assembly was then connected to a syringe pump delivery system. Deionized water was used as the working fluid, with volumetric flow rate up to 1.5 mL/min. The heat sink was subjected to a uniform heat flux of 5 W on the underside. Performance of the heat sink was evaluated in terms of pressure drop and the convection thermal resistance. Pressure drop across the heat sinks was less than 10 kPa, dominated by wall surface area rather than the small surface area contributed by cylindrical pins. At low flow rate, caloric thermal resistance dominated the overall thermal resistance of the heat sink. When compared to a microchannel without pins, the pin-fin microchannel reduced convective thermal resistance of the heat sink by approximately a factor of 4.

Copyright © 2018 by ASME
Topics: Cooling , Cavities

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In