0

Full Content is available to subscribers

Subscribe/Learn More  >

Water-Oil Flow in Square Microchannels With a Crossed Junction

[+] Author Affiliations
Zhen Cao, Zan Wu, Bengt Sunden

Lund University, Lund, Sweden

Jin-yuan Qian

Zhejiang University, Hangzhou, China

Paper No. FEDSM2018-83056, pp. V003T21A002; 6 pages
doi:10.1115/FEDSM2018-83056
From:
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME

abstract

In the present study, water-oil flow patterns and slug hydrodynamics were experimentally studied in square glass microchannels with various hydraulic diameters (Dh = 600 μm, 400 μm, 200 μm). The aqueous phase is the continuous phase while the organic phase is the dispersed phase. The ranges of flow rates of the continuous phase and the dispersed phase are 0–200 ml/h and 0–12 ml/h, 0–120 ml/h and 0–6 ml/h, and 0–60 ml/h and 0–2 ml/h in the microchannels with Dh = 600 μm, 400 μm and 200 μm, respectively. The results show that the hydraulic diameter has significant effects on flow patterns and three main flow patterns are observed, i.e., annular flow, slug flow and droplet flow. Generally, annular flow appeared at high flow rates of the dispersed phase and low flow rates of the continuous phase, while droplet flow appeared at low flow rates of the dispersed phase and high flow rates of the continuous phase. However, slug flow existed at comparable flow rates of the continuous and dispersed phases. A dimensionless analysis is carried out and a new dimensionless group including Weber number and Reynolds number is derived. The new defined dimensionless group performs well to develop a general flow pattern map. In addition, slug flow hydrodynamics are investigated as well in the present study, considering the slug length and slug velocity. Based on the present experimental results, a new scaling law is proposed to predict the slug length and it shows a good agreement with the experimental results. It has been widely reported that slug velocities depend linearly on the total flow rates of the two phases, which is consistent with the present study. The linear law provides a good prediction of the experimental slug velocities but different slopes are suggested in microchannels with different hydraulic diameters.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In