Full Content is available to subscribers

Subscribe/Learn More  >

Electroosmotic Flow Separation in a Corrugated Micro-Channel: A Numerical Study

[+] Author Affiliations
A. Banerjee, A. K. Nayak

Indian Institute of Technology Roorkee, Roorkee, India

Paper No. FEDSM2018-83026, pp. V003T21A001; 8 pages
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME


A two dimensional numerical study is made on the electroosmotic flow separation and vortex formation in a symmetric wavy micro/nano channel filled with a Newtonian, incompressible electrolyte. Flow domain is modelled by two superimposed sinusoidal functions which is mapped into a simpler rectangular computational domain using a suitable coordinate transformation. The distributions of flow field and electric potential are obtained by solving a coupled set of nonlinear governing equations involving Poisson-Nernst-Planck equation and Navier-Stokes equation using finite volume method. Threshold value of the scaled wave amplitude for flow reversal is obtained for fixed Debye-Hückel parameter and solute strength where flow separation plays a vital role for micromixing which can be a major interest for many research problems of biological flows.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In