Full Content is available to subscribers

Subscribe/Learn More  >

Simulations of an Air-Ventilated Strut Crossing Water Surface at Variable Yaw Angles

[+] Author Affiliations
Konstantin I. Matveev, Miles P. Wheeler

Washington State University, Pullman, WA

Tao Xing

University of Idaho, Moscow, ID

Paper No. FEDSM2018-83092, pp. V003T20A002; 6 pages
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME


Hydrodynamic devices intended to produce lift, control actions, or propulsion can be prone to air ventilation when operating near the free water surface. The atmospheric air may propagate to the low-pressure zones around these devices located under the nominal water level. This often leads to performance degradation of hydrodynamic systems. Modeling of air-ventilated flows is challenging due to complex flow nature and many factors in play. In this study, the computational fluid dynamics simulations are carried out for a surface-piercing strut at different yaw angles. At small yaw angles, the strut underwater surfaces remain wetted, whereas at large yaw and sufficiently high Froude numbers the suction side becomes air ventilated. At the intermediate yaw angles, both wetted and ventilated flow regimes are possible, and the existence of a specific state depends on the history of the process. The present computational results demonstrate good agreement with available experimental data.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In