Full Content is available to subscribers

Subscribe/Learn More  >

Threshold Criteria for Components of Predictive Model for Pipe Flow of Broadly-Graded Slurry

[+] Author Affiliations
Václav Matoušek

Czech Technical University in Prague, Prague, Czech Republic

Robert Visintainer, John Furlan

GIW Industries, Inc., Grovetown, GA

Anders Sellgren

Lulea University of Technology, Lulea, Sweden

Paper No. FEDSM2018-83455, pp. V003T19A010; 7 pages
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME


Industrial slurries transported in pressurized pipelines often consist of particles of broad size distribution. The broad particle size distribution affects slurry flow behavior in a pipe. A four-component model (4CM) predicts the frictional pressure drop in pipe flow of broadly graded slurry. The model considers Newtonian carrying liquid and splits the broadly graded solids into fractions (components) each of which contributes to the pressure drop through its own dominating friction mechanism expressed by a particular sub-model in the 4CM. The sorting of the solids into the components (carrier, pseudo-homogeneous, heterogeneous, fully-stratified) must be based on appropriate criteria. For the sake of simplicity, the 4CM currently uses threshold sizes of particles to split the solids into 4 components.

The goal of the present work is to analyze the existing criteria for the threshold between the pseudo-homogeneous component and heterogeneous component and for the threshold between the heterogeneous component and fully-stratified component. The analysis is based on a description of mechanisms governing particle support (suspension, deposition) of each particular solids component in slurry flow. It shows that the existing grain-size thresholds actually express certain proportions among threshold velocities of flow delimiting different slurry flow regimes. Such threshold velocities are the deposition-limit velocity, the initial-suspension velocity, and the full-suspension velocity. We discuss the proportions and demonstrate how properties (of liquid, solids, flow) and associated parameters additional to the grain size may influence the thresholds.

The analytical results are supported by experimental results for flow of individual components in a laboratory loop.

Copyright © 2018 by ASME
Topics: Pipe flow , Slurries



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In