Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Investigation of Sediment Transport in Sewers

[+] Author Affiliations
Maryam Alihosseini, Paul Uwe Thamsen

Berlin University of Technology, Berlin, Germany

Paper No. FEDSM2018-83274, pp. V003T17A005; 7 pages
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME


Sewer sediment deposition represents a crucial aspect of the maintenance of wastewater systems and has negative effects on the system itself as well as the environment. Therefore, it is important to design combined sewers, as sewage collection systems with high deposition risk, with adequate self-cleansing velocity to avoid the deposition. Despite the large number of investigations, the lack of knowledge about the particle behaviour in sewers remains a major problem in the field of sewer management. In the present work, the transport of sediments in partially filled channels is investigated experimentally and the results are compared to 3D-simulations performed with a coupled Computational Fluid Dynamics (CFD) model and Discrete Element Method (DEM). This research aims to investigate the self-cleansing design concept for uniform non-cohesive sediments based on moving of existing sediments on the sewer bed. The CFD part of the simulation is carried out in the commercial CFD software ANSYS Fluent, which is two-way coupled to the commercial DEM software EDEM through its User Defined Function. EDEM enhances the particle handling capability by resolving particle contacts, modelling bonded particles and non-spherical particles. The multiphase model Volume of Fluid (VOF) is used to capture the water and air interaction and the Discrete Phase Model (DPM) is applied to track the injected EDEM-particles. This paper also examines the applicability and limitations of this coupling method in simulation of sewer systems.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In