0

Full Content is available to subscribers

Subscribe/Learn More  >

The Numerical and Experimental Investigation Into Hydraulic Characteristics of a No-Load Running Check Valve due to Fluid-Structure Interaction

[+] Author Affiliations
Xiang-yuan Zhang, Zhi-jun Shuai, Chen-xing Jiang, Wan-you Li, Jie Jian

Harbin Engineering University, Harbin, China

Paper No. FEDSM2018-83524, pp. V003T12A033; 7 pages
doi:10.1115/FEDSM2018-83524
From:
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME

abstract

Valve is a very important unit in pipeline system. The valve flow fluctuation brings about structural vibration and unpopular noise, and even leads to the safety problems and disasters. In this paper, a special no-load running check valve is investigated. The check valve is structural complex with one inlet and two outlets. It can be simplified as a spring-mass system which manipulates the flow rate by combine action of the ambient pressure of medium and the spring deformation.

The three-dimensional model of the valve is established and also the relationship between pressure drops and flow rate of the valve is obtained in various openings and operating conditions. The structure modals were verified by the field tests and thus its fixing boundaries are obtained correctly.

The mechanism causing self-excited vibration of a piping system is determined using a dynamic model which couples the hydraulics of internal flow with the structural motion of a three-ports passive check valve. The coupling is obtained by making the fluid flow coefficient at the check valve to be a function of valve plug displacement. The results are compared with the experimental data, which verifies the correctness of the theoretical results.

It is shown that the special valve has its own hydraulic characteristics, which greatly influence its flow distribution as it has two outlets. It was also testified that the coupling between fluid and structure changes its natural frequencies and has a non-negligible impact on the pressure fluctuation while working.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In