0

Full Content is available to subscribers

Subscribe/Learn More  >

Clogging Mechanisms of Vortex Pumps: Fibrous Material Motion Capture and Simulation With a CFD and DEM Coupling Method

[+] Author Affiliations
Yamato Imasaka, Hitoshi Kanno, Sumio Saito, Kazuyoshi Miyagawa

Waseda University, Tokyo, Japan

Motohiko Nohmi, Miho Isono, Masahito Kawai

EBARA Corporation, Fujisawa, Japan

Paper No. FEDSM2018-83503, pp. V003T12A030; 10 pages
doi:10.1115/FEDSM2018-83503
From:
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME

abstract

Since wastewater pumps used in sewage systems have a trade-off relationship between non-clogging ability and efficiency, many internal flow and performance estimation studies so far have focused on optimizing both parameters. Here we focus on vortex pumps with a large space that allows foreign matters to pass through inside the casing that are used as sewage pumps.

In this paper, using experimental and numerical methods, we clarified clogging mechanism in the pumps using CFD (Computational Fluid Dynamics), Motion Capture and PIV (Particle Image Velocimetry) method.

Firstly, since it was difficult to observe the motion of foreign matter in the pumps, a simple experimental apparatus was built to quantify it. Five cylindrical rods were set in a rectangular water passage made of acrylic that has an 80mm*80mm cross section. The motion of strings in the passage was studied with experiments and computations. Strings were chosen as foreign matter because they are comparatively easy to compute and experiment with compared to fabric for example. In the experiments, the motion of strings could be recorded with a high-speed video camera and their motions were quantified with two-dimensional motion capture system.

In the computations, the motion of strings was simulated using DEM (Discrete Element Method) in the CFD software STAR-CCM+ by connecting particles with straight lines and coupling CFD with DEM. It is a numerical value method in which the motion and interaction of a large number of disintegrating objects is simulated. Its characteristic is that the point of contact between the particles is included in the equation of motion. Particles are connected by massless rods. These rods transmit force and momentum to each particle. Furthermore, the force between each particle is computed of the interaction between soft-particles and their bonding strength. In order to formulate the contact force between the particles, the spring-dashpot system is used. In addition, the optimal parameters of the DEM particles were obtained by conducting a parameter study.

We confirmed that the motion of the strings in the flow direction coincided with at a high precision in the passage. Furthermore, by applying the computational method with the above results, we were able to simulate the motion of strings in a vortex pump. We found that strings were pulled back into the pump by the backflow in the tongue of the pump. This backflow was observed using PIV results, providing experimental confirmation of this mechanism. Moreover, we were able to simulate the motions of fibrous materials in the passage and vortex pump.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In