0

Full Content is available to subscribers

Subscribe/Learn More  >

Internal Flow Analysis in a Two-Channel Pump Used for Salt Transportation

[+] Author Affiliations
Jiaqi Wang, Xianwu Luo

Tsinghua University, Beijing, China

Wanming Li

Zhanhua Haite Machinery Co., Ltd., Binzhou, China

Bin Ji

Wuhan University, Wuhan, China

Paper No. FEDSM2018-83428, pp. V003T12A024; 10 pages
doi:10.1115/FEDSM2018-83428
From:
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME

abstract

Two-channel pumps usually have very complicated flow field due to the special impeller geometry. The present paper treats the internal flow analysis based on numerical simulation so as to investigate the pumping performance and passage erosion for a two-channel centrifugal pump used for transporting salt particles. The static state flows are calculated by applying RANS method and k-omega SST turbulence model. The numerical results indicate that there are strong circulation flows near the impeller inlet and blade pressure side, and zones with high turbulent kinetic energy near impeller exit when the pump is operated under the designed flow rate i.e. Qd. Pressure decay is also found at the rear part of blade pressure side. At the operation condition of 1.3Qd, the internal flow becomes better. Further, the numerical analysis based on Eulerian-Lagrangian method shows the trajectory of salt particle, salt particle concentration and erosion rate in the pump. It is noted that the salt particles go smoothly in the flow passage due to the large section size of the pump, and there is severe erosion at the blade leading edge and the wall of volute casing due to strong impingement and high particle concentration. Thus, these areas such as blade leading edge and the wall of volute casing are the zones with high erosion risk in the two-channel pump.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In