Full Content is available to subscribers

Subscribe/Learn More  >

Performance Comparison of Gas Turbine Cycle Combined With Supercritical CO2 Recompression and Regenerative Cycle

[+] Author Affiliations
Yuqi Han, Weilin Zhuge, Yangjun Zhang, Haoxiang Chen

Tsinghua University, Beijing, China

Paper No. FEDSM2018-83187, pp. V003T12A020; 11 pages
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME


With the aim to recover waste heat from a specific micro gas turbine (MGT), and improve the thermal efficiency and the system compactness, simulation models of regenerative gas turbine cycle combined with supercritical CO2 recompression cycle and supercritical CO2 regenerative cycle respectively are developed. The influence of the introduction of the gas turbine recuperator with three cycle coupling methods on the thermal efficiency of the system is discussed. Compare to the micro gas turbine system combined with supercritical CO2 regenerative cycle, the improved system can increase the thermal efficiency and the output power by 3.32 percent point and 10.54% respectively. The impact on system performance of cycle parameters, including split ratio, the maximum temperature of the bottoming cycle, the recuperator effectiveness of the bottoming cycle and the hot side outlet temperature of the intermediate heat exchanger have been analyzed and optimized. From the viewpoints of the thermal efficiency and the heat transfer area, performance comparison between two bottoming cycles with different coupling methods is done. The multi-objective optimization study shows that the regenerative gas turbine cycle coupled in series with supercritical CO2 recompression cycle performs better than that coupled in parallel with supercritical CO2 regenerative cycle in terms of thermal efficiency.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In