0

Full Content is available to subscribers

Subscribe/Learn More  >

Interaction Between Surge Behavior and Internal Flow Field in an Axial-Flow Compressor

[+] Author Affiliations
Yuu Sakata, Nobumichi Fujisawa, Yutaka Ohta

Waseda University, Tokyo, Japan

Paper No. FEDSM2018-83172, pp. V003T12A016; 7 pages
doi:10.1115/FEDSM2018-83172
From:
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME

abstract

Interaction between surge behavior and internal flow field under coexisting phenomena of surge and rotating stall was experimentally investigated. In the experiment, the tank pressure of the compressor during surge was measured to detect the effect of the back-pressure fluctuation on the change in the internal flow field. Furthermore, the rotating stall in the compressor was investigated to define the influence of an unsteady internal flow field change on the surge behavior. From the tank pressure measurements, the amplitude of the tank pressure fluctuation was found to vary depending on the cycle. A larger maximal value for the tank pressure fluctuation led to a higher flow rate where the stall inception occurred. This difference in the flow rate indicated that the stall was induced by a severe adverse pressure gradient in the compressor. Then, the absolute rate of change in the flow coefficient was increased by both a large decrease in the compressor back pressure and performance degradation from stalling. In a case where the rate of decline in the flow rate was large, the scale of the stall cell developed up to a deep stall according to the movement of the operating point. Thus, a large trajectory for the surge cycle was selected, where the unsteady operating point went through the deep stall region. This development in the scale of the stall cell suggested to be influenced by the instability of the inner flow field caused by the rapid change in the flow rate.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In