0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigations on Flow Characteristics in Diffuser-Discharge-Channel of Volute Casing

[+] Author Affiliations
Yandong Gu, Ji Pei, Shouqi Yuan, Jinfeng Zhang, Xingcheng Gan

Jiangsu University, Zhenjiang, China

Ernst Nikolajew

Technical University of Kaiserslautern, Kaiserslautern, Germany

Paper No. FEDSM2018-83051, pp. V003T12A006; 8 pages
doi:10.1115/FEDSM2018-83051
From:
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5157-9
  • Copyright © 2018 by ASME

abstract

The volute casing used in centrifugal pumps is efficient for the transformation of kinetic energy into pressure energy, however, its asymmetric hydraulic design makes the flow in diffuser-discharge-channel (DDC) inhomogeneous, resulting in unsatisfactory flow patterns. In this study, the unsteady numerical simulations are carried out to investigate the transient flow characteristics in DDC. The accuracy of numerical results is found to agree well with experimental performance and pressure fluctuations. It is observed that the flow in DDC is significantly uneven. At the elbow of DDC, the static pressure on the volute left side (VL) is larger than the volute right side (VR) due to the flow impact and flow separation respectively. Thereby, this high-pressure gradient induces the secondary flow on the cross sections of DDC. Further, there is an obvious dependency of pressure fluctuations in the discharge pipe on the strong interaction between the impeller and tongue, in which four small peaks and four large peaks can be observed. At each moment, the pressure on VL gradually decreases from the inlet of discharge pipe to the pump outlet, while it increases on VR, finally, two sides tend to be the same. The pressure fluctuation intensity gradually becomes equivalent-distributed. In particular, it should be noticed that the energy loss in the diffuser part is larger than the discharge pipe, which requires a redesign concerning hydraulic performance. This study can help to better understand the transient flow characteristics and provide guidance for reducing flow loss in the volute casing.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In