Full Content is available to subscribers

Subscribe/Learn More  >

Aerodynamic Drag Measurement in a High-Enthalpy Shock Tunnel

[+] Author Affiliations
Yunpeng Wang, Zonglin Jiang

Chinese Academy of Sciences, Beijing, China

Honghui Teng

Beijing Institute of Technology, Beijing, China

Paper No. FEDSM2018-83021, pp. V002T14A001; 7 pages
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 2: Development and Applications in Computational Fluid Dynamics; Industrial and Environmental Applications of Fluid Mechanics; Fluid Measurement and Instrumentation; Cavitation and Phase Change
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5156-2
  • Copyright © 2018 by ASME


Shock tunnels create very high temperature and pressure in the nozzle plenum and flight velocities up to Mach 20 can be simulated for aerodynamic testing of chemically reacting flows. However, this application is limited due to milliseconds of its test duration (generally 500 μs–20 ms). For the force test in the conventional hypersonic shock tunnel, because of the instantaneous flowfield and the short test time [1–4], the mechanical vibration of the model-balance-support (MBS) system occurs and cannot be damped during a shock tunnel run. The inertial forces lead to low frequency vibrations of the model and its motion cannot be addressed through digital filtering. This implies restriction on the model’s size and mass as its natural frequencies are inversely proportional the length scale of the model. As to the MBS system, sometimes, the lowest natural frequency of 1 kHz is required for the test time of typically 5 ms in order to get better measurement results [2]. The higher the natural frequencies, the better the justification for the neglected acceleration compensation. However, that is very harsh conditions to design a high-stiffness MBS structure, particularly a drag balance. Therefore, it is very hard to carried out the aerodynamic force test using traditional wind tunnel balances in the shock tunnel, though its test flow state with the high-enthalpy is closer to the real flight condition.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In