Full Content is available to subscribers

Subscribe/Learn More  >

Fouling Analysis on Energy Dissipation Orifice Plates With Sediment Contained Water Flow

[+] Author Affiliations
Jin-yuan Qian, Min-rui Chen, Zhi-xin Gao, Zhi-jiang Jin

Zhejiang University, Hangzhou, China

Paper No. FEDSM2018-83159, pp. V002T11A005; 7 pages
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 2: Development and Applications in Computational Fluid Dynamics; Industrial and Environmental Applications of Fluid Mechanics; Fluid Measurement and Instrumentation; Cavitation and Phase Change
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5156-2
  • Copyright © 2018 by ASME


Hydropower stations play an important role in discharging the flood. Especially in wet seasons, the river water always contains several percentages of sediment, and the velocity of the water flowing through the flood discharging tunnel is very high. Arranging some energy dissipation orifice plates in the flood discharging tunnel, cannot only reduce the pressure and flow velocity, but also deposit sediment and reduce the sediment content. However, fouling on energy dissipation orifice plates can initiate material corrosion of perforated plates, even weaken the energy dissipation performance. In this paper, the fouling performance on energy dissipation orifice plates with sediment contained water flow is investigated. To begin with, the pressure along the path is used to compare with a reported experiment to verify the reliability of the numerical method. Then, effects of the solid particle diameter, the sediment volume concentration and the inlet flow velocity on the particle distribution are observed. The results show that with the increase of the Reynolds number, the sediment volume fraction and the sediment particle diameter, more sediments accumulate at both surfaces of the orifice plate. The Reynolds number and the sediment volume fraction affect the upstream surface more significantly, while the effect of sediment particle diameter is more notable on the downstream surface. Additionally, the energy dissipation coefficient of the orifice plate is mainly dominated by the Reynolds number. This work is of significance for further analysis of fouling problems in energy dissipation orifice plates or similar fluid machinery.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In