0

Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Objective Optimization on Inlet Pipe of a Vertical Inline Pump Based on Genetic Algorithm and Artificial Neural Network

[+] Author Affiliations
Xingcheng Gan, Ji Pei, Shouqi Yuan, Wenjie Wang, Yajing Tang

Jiangsu University, Zhenjiang, China

Paper No. FEDSM2018-83053, pp. V001T06A003; 8 pages
doi:10.1115/FEDSM2018-83053
From:
  • ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
  • Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fluid Dynamics of Wind Energy; Bubble, Droplet, and Aerosol Dynamics
  • Montreal, Quebec, Canada, July 15–20, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5155-5
  • Copyright © 2018 by ASME

abstract

In order to save the space for installation, a bent pipe is adopted for inlet of vertical inline pump. In this paper, to improve the performance of inlet pipe, a multi-objective optimization on the inlet pipe is proposed based on Genetic Algorithm (GA) and Artificial Neural Network (ANN) model. A 5th-order Bezier curve is applied to fit the mean line of the inlet pipe and 3rd-order Bezier curves are used for depicting the variation trend of shape of sections. As the outlet of inlet pipe is fixed, 11 design variables are utilized for optimization, and the three optimization objectives are efficiency, head and standard deviation of velocity at the outlet of inlet pipe. To get the surrogate model, 149 different models obtained from Latin hypercube sampling are solved with numerical simulation. The results showed the numerical simulation has a great agreement with the experiment. Artificial neural network can accurately fit the target functions and design variables. The deviation of efficiency, head and standard deviation of velocity between predicted value and actual value were 0.26%, 0.05m and −0.27m/s, respectively. After optimization, an improvement on flow condition and a decrease of standard deviation of velocity before impeller were obtained. The efficiency and head were improved by 1.16% and 0.2m, respectively.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In