0

Full Content is available to subscribers

Subscribe/Learn More  >

Statistical Burnup Distribution of Moving Pebbles in HTR-PM Reactor

[+] Author Affiliations
Fanny Vitullo, Jiri Krepel, Jarmo Kalilainen, Andreas Pautz

Paul Scherrer Institut, Villigen, Switzerland

Horst-Michael Prasser

ETH Zürich, Zürich, Switzerland

Paper No. ICONE26-81082, pp. V009T16A005; 10 pages
doi:10.1115/ICONE26-81082
From:
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 9: Student Paper Competition
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5153-1
  • Copyright © 2018 by ASME

abstract

In the pebble-bed high temperature reactor under construction in China, called HTR-PM, the spherical fuel elements continuously flow downward in the cylindrical core. After the discharge, the burnup of each pebble is checked at the core outlet and, according to the achieved burnup level, the pebble might be disposed or reinserted into the upper section of the core, distributing randomly in the radial direction and defining a variable number of passes necessary to achieve the average maximum burnup of 90 MWd/kgU. Discrete Element Method (DEM) simulations have been carried out to achieve a clear understanding of the movement of 420,000 fuel pebbles in the HTR-PM core. At the same time, neutronic properties have been investigated for a single pebble and for the full core with Serpent 2 Monte Carlo code in order to perform a parametrization of the one-group microscopic cross sections at the core-level. The pebble movement has been coupled with the neutronic behavior of a single pebble in a dedicated burnup script called Moving Pebble Burnup (MPB), developed in Matlab. 3,000 single pebble burnup histories were simulated to obtain sufficient statistics and insight on the burnup process in the HTR-PM. The decrease of the average burnup gained per single pass implies that a miss-handling of recirculated fuel elements is unlikely to lead to exceedance of the maximum allowed burnup of 100 MWd/kgU. Furthermore, the core demonstrates a self-compensation effect of burnup, meaning that it always compensates burnup under- or over-runs in the successive passes. Finally, it is possible to conclude that the fuel cycle of the HTR-PM, as it has been laid out, is well-designed and feasible.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In