0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Initial Condition of Melt Jet on the Jet Breakup Phenomenon in the Subcooled Water Pool

[+] Author Affiliations
Woo Hyun Jung, Hyun Sun Park, Kiyofumi Moriyama, Moo Hwan Kim

Pohang University of Science and Technology, Pohang, Korea

Paper No. ICONE26-82310, pp. V007T11A015; 9 pages
doi:10.1115/ICONE26-82310
From:
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 7: Decontamination and Decommissioning, Radiation Protection, and Waste Management; Mitigation Strategies for Beyond Design Basis Events
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5151-7
  • Copyright © 2018 by ASME

abstract

The melt jet breakup phenomenon in a pre-flooded reactor cavity during a severe accident is related to the debris bed coolability. It is important to predict the jet breakup length for the evaluation of the debris bed coolability.

A large volume of works on the jet breakup length have been performed. However, the consistency between experiments and correlations was difficult to achieve. Some data follow the Saito correlation (include Froude number in the correlation) and others follow the Epstein correlation (doesn’t include Froude number).

The separation of the jet breakup length correlation along the water subcooling was reported based on the experimental data using the low melting temperature materials in our previous works. Since the previous experiments show an unclear jet shape before entering the water pool which could be an uncertainty factor, a slide gate system for a clear jet shape was additionally installed. Experiments were conducted with the similar condition of previous work and different initial condition of melt jet. With a clear jet shape, the jet breakup length in the subcooled water show different tendency following the Saito correlation.

To figure out the effect of the entry condition of the melt jet, the jet diameter and the method of estimating the jet breakup length are revisited. Our previo0us experiments show large uncertainties on the jet diameter, leading to the large discrepancy of the dimensionless jet breakup length. Also, early broken jet core is reported in subcooled water cases.

Thus, the uncertain characteristics of the jet breakup length analysis is discussed in this paper including the jet diameter and the method to estimate the jet breakup length.

Copyright © 2018 by ASME
Topics: Subcooling , Water

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In