0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Water Droplet Heat Removal and Dynamics During its Impact Onto the Micro-Pillar Array at Elevated Temperature

[+] Author Affiliations
Beni Mehrdad Shahmohammadi, Shangzhen Xie, Jiyun Zhao

City University of Hong Kong, Kowloon, Hong Kong

Paper No. ICONE26-81171, pp. V007T11A001; 7 pages
doi:10.1115/ICONE26-81171
From:
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 7: Decontamination and Decommissioning, Radiation Protection, and Waste Management; Mitigation Strategies for Beyond Design Basis Events
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5151-7
  • Copyright © 2018 by ASME

abstract

The spray cooling and heat removal efficiency is one of the important aspect of nuclear thermalhydraulics and safety, especially for passive containment cooling after severe accidents. In order to design and optimize these systems effectively, computer modelling of the underlying mechanism of the liquid drop interaction with the hot solid surface would be necessary. Therefore, completeness, accuracy and reliability of the models that are being used in such sensitive areas are vital to the society and environment. Furthermore, the current powerful computer resources need to be fully exploited, so that the precision and the accuracy of the obtained computational results would be further enhanced. Nowadays, Volume-Of-Fluid (VOF) method is widely used in simulating the droplet dynamics, however these models provide estimations that are different in certain extents compare to the experimental results. In present work, we have used the level-set method to study the droplet dynamics and heat removal when the water droplet impact on the surface with different morphologies. The developed model which is based on the finite element method (FEM) has been benchmarked with previously performed experiments regarding the droplet bouncing on a flat hydrophobic surface; these estimations were in a good agreement with the previously published results. Moreover, hot solid surfaces with presence of micro-pillar has been considered to perform sensitivity study for different sizes of the micro-pillars and water droplets. In addition, it has been found that the heat transfer and droplet dynamic behavior would significantly vary in scenarios when the micro-pillars are presents in compare to a flat solid surface; it is observed that a better droplet spreading can be obtained with optimal size of micro-pillars that are present underneath of the droplet axial trajectory. The present study and the model would add valuable information to the field of heat transfer in aspect of spray cooling by investigating the feasibility of using the level-set method for a better estimation of fluid and heat transfer related results.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In