Full Content is available to subscribers

Subscribe/Learn More  >

Analyzing Droplet Size Distributions Inside a Self-Priming Venturi Scrubber for Filtered Containment Venting Systems

[+] Author Affiliations
P. Papadopoulos, H.-M. Prasser

ETH Zürich, Zürich, Switzerland

T. Lind

Paul Scherrer Institut, Villigen, Switzerland

Paper No. ICONE26-82227, pp. V06BT08A044; 7 pages
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 6B: Thermal-Hydraulics and Safety Analyses
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5149-4
  • Copyright © 2018 by ASME


After the accident in the Fukushima Daiichi nuclear power plant, the interest of adding Filtered Containment Venting Systems (FCVS) on existing nuclear power plants to prevent radioactive releases to the environment during a severe accident has increased. Wet scrubbers are one possible design element which can be part of an FCVS system. The efficiency of this scrubber type is thereby depending, among others, on the thermal-hydraulic characteristics inside the scrubber. The flow structure is mainly established by the design of the gas inlet nozzle. The venturi geometry is one of the nozzle types that can be found in nowadays FCVS. It acts in two different steps on the removal process of the contaminants in the gas stream. Downstream the suction opening in the throat of the venturi, droplets are formed by atomization of the liquid film. The droplets are contributing to the capture of aerosols and volatile gases from the mixture coming from the containment. Studies state that the majority of the contaminants is scrubbed within this misty flow regime. At the top of the venturi, the gas stream is injected into the pool. The pressure drop at the nozzle exit leads to the formation of smaller bubbles, thus increasing the interfacial area concentration in the pool. In this work, the flow inside a full-scale venturi scrubber has been optically analyzed using shadowgraphy with a high-speed camera. The venturi nozzle was installed in the TRISTAN facility at PSI which was originally designed to investigate the flow dynamics of a tube rupture inside a full-length scale steam generator tube bundle. The data analysis was focused on evaluating the droplet size distribution and the Sauter mean diameter under different gas flow rates and operation modes. The scrubber was operated in two different ways, submerged and unsubmerged. The aim was to include the effect on the droplet sizes of using the nozzle in a submerged operation mode.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In