Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation and Flow Visualization of the Two-Phase Flow Instability at Low Vapor Quality in a Vertical Narrow Channel

[+] Author Affiliations
Liqiang Pan, Yang Liu, Weihua Li, Yefei Liu

Tsinghua University, Beijing, China

Paper No. ICONE26-82052, pp. V06BT08A026; 7 pages
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 6B: Thermal-Hydraulics and Safety Analyses
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5149-4
  • Copyright © 2018 by ASME


The two-phase flow instability of forced convection has been experimentally investigated in a vertical narrow channel with the hydraulic diameter of 2.857mm and aspect ratio of 20. Transparent, metallic and conductive films on external surfaces of the test section can provide visualization and uniform heating for deionized water. The heat flux is 6–18.2 kW · m−2. When the instability occurs at low vapor quality, a series of parameters are measured and visualized images are obtained by a high-speed camera. The results show that the large amplitude of pressure drop between the inlet and outlet in the test section is due to the elongated bubble, and the value of pressure drop is positively correlated with the volume of the bubble. The oscillation period of pressure drop decreases with the increase of heat flux, and the period can be determined by the method of the Fast Fourier Transform. The backflow phenomenon is analyzed, which has a greater effect on the oscillation of pressure drop than bubble nucleation, bubble growth, bubble coalescence and recoiling of bubble boundary.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In