Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Parameters on the Two-Phase Flow Instability in a Microchannel

[+] Author Affiliations
Yefei Liu, Yang Liu, Xingtuan Yang, Liqiang Pan

Tsinghua University, Beijing, China

Paper No. ICONE26-81992, pp. V06BT08A016; 9 pages
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 6B: Thermal-Hydraulics and Safety Analyses
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5149-4
  • Copyright © 2018 by ASME


Series of experiments are conducted in a single microchannel, where subcooled water flows upward inside a transparent and vertical microchannel. The cross section of the channel is rectangle with the hydraulic diameter of 2.8mm and the aspect ratio of 20. The working fluid is 3–15K subcooled and surface heat flux on the channel is between 0–3.64 kW/m2, among which two-phase instability at low vapor quantity may occur. By using a novel transparent heating technique and a high-speed camera, visualization results are obtained. The parameters are acquired with a National Instruments Data Acquisition card. In the experiments, long-period oscillation and short-period oscillation are observed as the primary types of instability in a microchannel. Instability characteristics represented from signals correspond well with the flow pattern. Moreover, effects of several parameters are investigated. The results indicate that the oscillating period generally increases with the heat flux density and decreases with inlet subcooling, while the effects of inlet resistance are more complex.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In