0

Full Content is available to subscribers

Subscribe/Learn More  >

Development and Application of Multi-Physics Safety Analysis Code for Advanced Liquid Metal Cooled Reactor

[+] Author Affiliations
Chi Wang, Xuebei Zhang, Jingchao Feng, Muhammad Shehzad Khan, Minyou Ye, Hongli Chen

University of Science and Technology of China, Hefei City, China

Paper No. ICONE26-81973, pp. V06BT08A015; 10 pages
doi:10.1115/ICONE26-81973
From:
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 6B: Thermal-Hydraulics and Safety Analyses
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5149-4
  • Copyright © 2018 by ASME

abstract

The simulation of 3D thermal-hydraulic problem for the pool type fast reactors, is one of the necessary and great importance. Most system codes can’t be used to simulate multi-dimensional thermal-hydraulics problems, whereas, the CFD method is suitable to deal with these type of simulation challenges. Based on the CFD method, a neutronics and thermohydraulic coupling code FLUENT/PK for nuclear reactor safety analysis by coupling the commercial CFD code FLUENT with the point kinetics model (PKM) and the pin thermal model (PTM) is developed by University of Science and Technology of China (USTC). The coupled code is verified by comparing with a series of benchmarks on beam interruptions in a lead-bismuth-cooled and MOX-fuelled accelerator-driven system. The variations of transient power, fuel temperature and outlet coolant temperature all agree well with the benchmark results. The validation results show that the code can be used to simulate the transient accidents of critical and sub-critical lead/lead-bismuth cooled reactors. Then this coupling code is used to evaluate the safety performance of MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) at unprotected beam over-power (UBOP) accident, and M2LFR-1000 (Medium-size Modular Lead-cooled Fast Reactor) at the unprotected transient over-power (UTOP) and unprotected loss of flow (ULOF) accident. The transient power, the temperature of coolant and fuel and multi-dimensional flow phenomena in upper plenum and lower plenum are presented and discussed in this paper.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In