0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on the Critical Heat Flux of Nanofluid Flow Boiling Under Different Conditions

[+] Author Affiliations
Y. Wang, N. N. Yue, Y. F. Zan

Nuclear Power Institute of China, Chengdu, China

K. H. Deng, J. M. Wu, G. H. Su, S. Z. Qiu

Xi'an Jiaotong University, Xi'an, China

Paper No. ICONE26-81752, pp. V06AT08A070; 6 pages
doi:10.1115/ICONE26-81752
From:
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 6A: Thermal-Hydraulics and Safety Analyses
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5148-7
  • Copyright © 2018 by ASME

abstract

Nanofluid has been attracted great attention since it was proposed as a preeminent working fluid. Flow boiling is familiar in heat transfer system and the critical heat flux is a key parameter for the design of thermal hydraulic. In present work, the critical heat flux of nanofluid flow boiling is experimentally investigated in a vertical tube with the consideration of outlet pressure, mass flux, inlet subcooling, heating length and diameter. The results indicate that the critical heat flux of nanofluid flow boiling is enhanced compared with base fluid and the increasing radio is increased with increasing the mass flux, diameter and pressure, and with decreasing the heating length. In addition, the inlet subcooling and concentrations (0.1vol.%, 0.5vol.%) have almost no significant influence. Furthermore, a new mechanism for the enhancement of nanofluid flow boiling critical heat flux was proposed by the SEM images of nanopariticle deposition on the heating surface.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In