0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Functional Spacers on the Liquid Film Thickness and Dryout in a BWR Fuel Bundle Model

[+] Author Affiliations
Christian Bolesch, Lukas Robers, Horst-Michael Prasser

ETH Zürich, Zurich, Switzerland

Robert Zboray

Pennsylvania State University, University Park, PA

Paper No. ICONE26-81602, pp. V06AT08A060; 7 pages
doi:10.1115/ICONE26-81602
From:
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 6A: Thermal-Hydraulics and Safety Analyses
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5148-7
  • Copyright © 2018 by ASME

abstract

For the BWRs, the dryout margin is one of the core design limitation factors. Today’s industry standard is to use a large margin to dryout and functional spacer grids with vanes to enhance the heat transfer and to reduce the fraction of entrained droplets. Difficulties for precise measurements under reactor conditions lead to a lack of knowledge on the exact effects of the spacers on the flow and suggest the use of scaled experiments. For this experiment, the goal is to provide high-resolution data for CFD code validation as well as visualizing the effects of functional spacers and the liquid film and potentially the dryout front.

The Dryout Tomography Experiment (DoToX) facility at ETH Zürich is a closed loop experiment for two-phase flow investigations in a fuel bundle model using a modelling fluid. Key aspects are a single undisturbed subchannel and the surrounding four heating rods containing a liquid heating system. This setup allows for a steady state dryout without endangering the structural integrity of the facility and for the 3D reconstruction of the time averaged void distribution within the flow channel by means of an X-Ray and cold neutron Computer Tomography (CT).

In this study we pay special attention to the annular flow in the upper half of the sub channel. We investigate the first results delivered by the facility. Prototypical spacer designs available in the open literature were used. We present the Liquid Film Thickness (LFT) distributions on the walls of the heating rods. Improvements towards the dryout performance as well as drawbacks of the specified spacer design are highlighted.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In