0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Experimental Technology for Simulated Fuel-Assembly Heating to Address Core-Material-Relocation Behavior During Severe Accident

[+] Author Affiliations
Yuta Abe, Takuya Yamashita, Ikken Sato, Toshio Nakagiri, Akihiro Ishimi, Yuji Nagae

Japan Atomic Energy Agency, O-arai, Japan

Paper No. ICONE26-81411, pp. V004T06A014; 9 pages
doi:10.1115/ICONE26-81411
From:
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 4: Nuclear Safety, Security, and Cyber Security; Computer Code Verification and Validation
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5146-3
  • Copyright © 2018 by ASME

abstract

Authors are developing an experimental technology to realize experiments simulating Severe Accident (SA) conditions using simulant fuel material (ZrO2 with slight addition of MgO for stabilization) that would contribute not only to Fukushima Daiichi (1F) decommissioning but also to enhance the safety of worldwide existing and future nuclear power plants through clarification of the accident progression behavior. Based on the results of the prototype test, improvement of plasma heating technology was conducted. The Core Material Melting and Relocation (CMMR)-1/-2 experiments were carried out in 2017 with the large-scale simulated fuel assembly (1 m × 0.3 mϕ) applying the improved technology (higher heating power and controlled oxygen concentration). In these two tests, heating history was different resulting basically in similar physical responses with more pronounced material melting and relocation in the CMMR-2 experiment. The CMMR-2 experiment is selected here from the viewpoint of establishing an experimental technology. The CMMR-2 experiment adopted 30-min heating period, the power was increased up to a level so that a large temperature gradient (> 2,000 K/m) expected at the lower part of the core in the actual 1F accident conditions. Most of the control blade and the channel box migrated from the original position. After the heating, the simulated fuel assembly was measured by the X-ray Computed Tomography (CT) technology and by Electron Probe Micro Analyzer (EPMA). CT pictures and elemental mapping demonstrated its excellent performance with rather good precision. Based on these results, an excellent perspective in terms of applicability of the non-transfer type plasma heating technology to the SA experimental study was obtained.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In