0

Full Content is available to subscribers

Subscribe/Learn More  >

Strength Limit of Thimble Tube With Material Plasticity Under Bending Moment and Axial Compression Force

[+] Author Affiliations
Hisashi Koike, Masaji Mori

Nuclear Development Corporation, Tokaimura, Japan

Daisuke Fujiwara, Takashi Shimomura

Mitsubishi Nuclear Fuel Co., Ltd., Tokaimura, Japan

Paper No. ICONE26-81468, pp. V003T02A020; 7 pages
doi:10.1115/ICONE26-81468
From:
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 3: Nuclear Fuel and Material, Reactor Physics, and Transport Theory
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5145-6
  • Copyright © 2018 by ASME

abstract

The thimble tube, which is made of Zircaly-4, is one of the main components of a PWR fuel assembly. The thimble tube has an important role as a structural member of the skeleton. Another role of the thimble tube is to guide a rod cluster control assembly (RCCA) for insertion during the reactor operation, and the function has to be assured not only in normal operation but in a seismic event.

In a horizontal seismic event, the fuel assembly vibrates laterally, which gives bending moment to the thimble tube. In addition, axial compressive force acts on the thimble tube in a vertical seismic event.

The integrity of the thimble tube has to be maintained while this force and moment act. Mitsubishi has confirmed by the elastic stress analysis that the stress of the thimble tube is lower than the limit value requested for the seismic event. The stress evaluation method is based on the ASME code.

The ASME code also describes the limit analysis which is available when the predicted stress is beyond elastic region of the material. In the analysis, the material is assumed to be elastic-perfectly plastic, and the maximum load that the structure can carry is calculated. For the reason mentioned above, the allowable limit of the thimble tube should be determined as a function between the force and the moment. We are planning to examine the allowable limit experimentally.

As a step before testing, an analytical approach for the limit is discussed in this paper. Firstly, the allowable limit is calculated by a beam model assuming elastic-perfectly plastic material, based on the ASME code.

Secondly, a 3D model analysis with elastic-plastic material is performed to predict the practical strength. Based on the comparison with the analysis using elastic-perfectly plastic material, ASME based limit is considerably conservative compared with the one with the actual stress-strain curve. Conversely, this means there is enough room to rationalize the allowable limit.

As the future work, the experiment will be conducted to obtain the practical limit of the thimble tube and to verify the analysis results.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In