Full Content is available to subscribers

Subscribe/Learn More  >

Transient Analysis of Fire Protection System at a Nuclear Power Plant Using Computer Code USLAM

[+] Author Affiliations
Asif H. Arastu, Eugene Tom

Unisont Engineering, Inc., Oakland, CA

Paper No. ICONE26-82622, pp. V002T03A036; 8 pages
  • 2018 26th International Conference on Nuclear Engineering
  • Volume 2: Plant Systems, Structures, Components, and Materials; Risk Assessments and Management
  • London, England, July 22–26, 2018
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5144-9
  • Copyright © 2018 by ASME


A new Method Of Characteristics (MOC) based computer code, USLAM, has been used to analyze the Fire Protection System (FPS) of a Nuclear Power Plant. Some unique features of this system are that it has a complex geometry, has many operating modes, is connected to an adjacent nuclear power plant FPS, and has a significant number of high elevation standpipes or risers. In a typical FPS, firefighting water is pumped from a low elevation reservoir at atmospheric pressure to the whole system including higher elevations regions where water hammer due to water column separation & rejoining may occur. A low capacity keep-full system is employed to keep the system pressurized during standby conditions. A loss of system pressure due to the opening of the pre-action or deluge valves can lead to void formation at high elevations whose collapse can result in severe water hammer. A catastrophic valve failure due to a water hammer event at a nuclear power plant (Arastu, et al, 1999) disabled the entire FPS.

The analysis presented in this paper is to evaluate the possibility of such a water hammer event and mitigate it in an effective manner. The mitigation method employed is the use of multiple vacuum breakers. As many as 11 vacuum breakers are used for this purpose. The paper discusses the analysis results without and with vacuum breakers for all operating modes. The basic methodology of the USLAM code is also discussed.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In