Full Content is available to subscribers

Subscribe/Learn More  >

Electrochemical Energy Storage and Synthetic Natural Gas Production Based on Reversible Molten Carbonate Cells

[+] Author Affiliations
Luca Mastropasqua, Francesca Baia, Luca Conti, Stefano Campanari

Politecnico di Milano, Milan, Italy

Paper No. ES2018-7344, pp. V001T07A006; 13 pages
  • ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum
  • ASME 2018 12th International Conference on Energy Sustainability
  • Lake Buena Vista, Florida, USA, June 24–28, 2018
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5141-8
  • Copyright © 2018 by ASME


One of the biggest issues associated to Carbon Capture and Utilisation (CCU) applications involves the exploitation of the captured CO2 as a valuable consumable. An interesting application is the conversion of CO2 into renewable fuels via electrochemical reduction at high temperature. Still unexplored in the literature is the possibility of employing a Molten Carbonate Electrolysis Cell (MCEC) to directly converting CO2 and H2O into H2, CO and eventually CH4, if a methanation process is envisaged. The introduction of this concept into a reversible system — similarly to the process proposed with reversible solid-oxide cells — allows the creation of a cycle which oxidises natural gas to produce CO2 and then employs the same CO2 and excess renewable energy to produce renewable natural gas. The result is a system able to perform electrochemical storage of excess renewable energy (from wind or solar) and if/when required sell renewable natural gas to the grid.

In this work, a simulation of a reversible Molten Carbonate Cell (rMCC) is proposed. The reference MCFC technology considered is that from FuelCell Energy (USA) whose smaller stack is rated at 375 kW (DC). A simplified 0D stack model is developed and calibrated against experimental data. The Balance of Plant (BoP) is in common between the two operation modes MCFC and MCEC. In the former case, natural gas is electrochemically oxidised in the fuel compartment which receives carbonate ions (CO32−) from the air compartment, fed with air enriched with CO2 produced during electrolysis mode. The CO2 in the anode off gas stream is then purified and stored. In electrolysis mode, the stored CO2 is mixed with process H2O and sent to the fuel compartment of the MCEC; here, electrolysis and internal methanation occur. An external chemical reactor finalises the production of methane for either natural gas grid injection or storage and reuse in fuel cell mode. A thermodynamic analysis of the system is performed the yearly round-trip efficiency is assessed considering an assumed availability operating time of 7000 h/y. Finally, the overall green-house gas emission is assessed.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In