Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of Thermal Performance Enhancement of Molten Salt Nanomaterials

[+] Author Affiliations
Amirhossein Mostafavi, Vamsi Kiran Eruvaram, Donghyun Shin

University of Texas at Arlington, Arlington, TX

Paper No. POWER2018-7516, pp. V002T12A014; 6 pages
  • ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum
  • Volume 2: Heat Exchanger Technologies; Plant Performance; Thermal Hydraulics and Computational Fluid Dynamics; Water Management for Power Systems; Student Competition
  • Lake Buena Vista, Florida, USA, June 24–28, 2018
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5140-1
  • Copyright © 2018 by ASME


Concentrating solar power (CSP) plants are one of the main technologies harvesting solar energy indirectly. In CSP systems, solar radiant light is concentrated into a focal receiver, where heat transfer fluid (HTF) as the energy carrier absorbs solar radiation. Thermal energy storage (TES) is the key method to expand operational time of CSP plants. Consequently, thermo-physical properties of the HTF is an important factor in transferring thermal energy. One of the promising chemicals for this purpose is a mixture of molten salts with stable properties at elevated temperatures. However, low thermal properties of molten salts, such as specific heat capacity (cp) around 1.5 kJ/kg°C, constrain thermal performance of CSP systems. Recently, many studies have been conducted to overcome this shortcoming, by adding minute concentration of nanoparticles. In this work, the selected molten salt eutectic is a mixture of LiNO3–NaNO3 by composition of 54:46 mol. % plus dispersing Silicon Dioxide (SiO2) nanoparticles with 10nm particle size. The results from the measured specific heat capacity by modulated differential scanning calorimeter (MDSC) shows a 9% cp enhancement. Moreover, the viscosity of the mixture is measured by a rheometer and the results show that the viscosity of molten salt samples increases by 27% and this may result in increasing the pumping energy of the HTF. Consequently, overall thermal performance of the selected mixture is investigated by figure of merit (FOM) analysis. The interesting results show an enhancement of the thermal storage of this mixture disregard with the viscosity increase effect.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In