0

Full Content is available to subscribers

Subscribe/Learn More  >

Micro-Tubular Flame-Assisted Fuel Cell Power Generation Running Propane and Butane

[+] Author Affiliations
Ryan J. Milcarek, Jeongmin Ahn

Syracuse University, Syracuse, NY

Paper No. POWER2018-7175, pp. V002T12A002; 9 pages
doi:10.1115/POWER2018-7175
From:
  • ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum
  • Volume 2: Heat Exchanger Technologies; Plant Performance; Thermal Hydraulics and Computational Fluid Dynamics; Water Management for Power Systems; Student Competition
  • Lake Buena Vista, Florida, USA, June 24–28, 2018
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5140-1
  • Copyright © 2018 by ASME

abstract

Direct use of propane and butane in Solid Oxide Fuel Cells (SOFCs) is desirable due to the availability of the fuel source, but is challenging due to carbon coking, particularly on the commercially available Ni+YSZ anode. A novel dual chamber Flame-assisted Fuel Cell (FFC) configuration with micro-tubular SOFCs (mT-SOFCs) is proposed for direct use of higher hydrocarbon fuels. Combustion exhaust for propane and butane fuels is analyzed experimentally and compared with chemical equilibrium. mT-SOFC polarization and power density testing in the FFC configuration with propane and butane fuels is discussed. Peak power and electrical efficiency conditions are assessed by varying the fuel-rich combustion equivalence ratio and flow rate. Carbon deposition and soot formation on the Ni+YSZ anode is investigated with a scanning electron microscope. The results indicate that reasonable power density (∼289 mW.cm−2) can be achieved while limiting soot formation in the flame and carbon deposition on the anode. Electrical efficiency based on the higher heating value of the fuels is analyzed and future research is recommended. Possible applications of the technology include small scale power generation, cogeneration and combined cycle power plants.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In