Full Content is available to subscribers

Subscribe/Learn More  >

Study of Surface Tension and Natural Evaporation of Aqueous Surfactant Solutions

[+] Author Affiliations
Birce Dikici, Matthew J. Lehman

Embry-Riddle Aeronautical University, Daytona Beach, FL

Paper No. POWER2018-7281, pp. V002T11A001; 7 pages
  • ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum
  • Volume 2: Heat Exchanger Technologies; Plant Performance; Thermal Hydraulics and Computational Fluid Dynamics; Water Management for Power Systems; Student Competition
  • Lake Buena Vista, Florida, USA, June 24–28, 2018
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5140-1
  • Copyright © 2018 by ASME


Surface tension and solution evaporation of aqueous solutions of sodium lauryl sulfate (SLS), ECOSURF™ EH-14, and ECOSURF™ SA-9 under natural convection is examined through experimental methods. SLS is an anionic surfactant while EH-14 and SA-9 are environmentally-friendly nonionic surfactants.

Surfactants are known to affect evaporation performance of solutions and are studied in relation to water loss prevention and heat dissipation. Surfactants could be useful under drought conditions which present challenges to water management on a yearly basis in arid areas of the world. Recent water scarcity in the greater Los Angeles area, south eastern Africa nations, eastern Australia and eastern Mediterranean countries has high cost of water loss by evaporation. Surfactants are studied as a potential method of suppressing evaporation in water reservoirs. Surfactants are also studied as performance enhancers for the working fluid of heat dissipation devices, such as pulsating heat pipes used for electronics cooling. Some surfactants have been shown to lower thermal resistances and friction pressure in such devices and thereby increase their efficiency.

The static surface tensions of the aqueous-surfactant solutions are measured with surface tensiometer using Wilhelmy plate method. The surfactants are shown to lower surface tension significantly from pure water. The surface tension values found at the Critical Micelle Concentration are 33.8 mN/m for SLS, 30.3 mN/m for EH-14, and 30.0 mN/m for SA-9. All three surfactants reduced natural convection water loss over 5 days with SLS showing the greatest effect on evaporation rates. The maximum evaporation reduction by each surfactant from distilled water with no surfactants after 5 days is 26.1% for SLS, 20.8% for EH-14, and 18.4% for SA-9.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In