Full Content is available to subscribers

Subscribe/Learn More  >

Simulation and Analysis of the Supercritical ORC Heat Exchanger

[+] Author Affiliations
Yung-Ming Li, Chi-Chuan Wang

National Chiao Tung University, Hsinchu, Taiwan

Paper No. POWER2018-7406, pp. V002T07A004; 7 pages
  • ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum
  • Volume 2: Heat Exchanger Technologies; Plant Performance; Thermal Hydraulics and Computational Fluid Dynamics; Water Management for Power Systems; Student Competition
  • Lake Buena Vista, Florida, USA, June 24–28, 2018
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5140-1
  • Copyright © 2018 by ASME


The traditional organic Rankine cycle (ORC) is operated below critical point. However, the specific heat of the working fluid undergoes tremendous change near the critical point. This can improve the thermal performance of the system due to the enhancement of heat transfer coefficient within the heat exchanger. However, the strong temperature dependence of thermo-physical properties of the working fluid especially at near the critical point requires much more efforts in designing a heat exchanger. Hence, more elaborate calculation involving stepwise integration is needed as far as accuracy is concerned. Therefore the heat exchanger is divided into several segments. The outlet temperatures of the first segment serve as the input parameters for the second segment, and the process is carried out further on. The fluid properties are calculated with the actual bulk temperature of each segment. With increasing number of segments, better resolution of temperature distribution of both heat source and working fluid within the heat exchanger is achieved. In the present study, a plate heat exchanger was numerically examined by using R-245fa as a working fluid at a supercritical condition. The effects of the working pressure and mass flow rate were examined in detail. For all cases in this study, the maximum of the total heat transfer rate was achieved by a working pressure of 3700 kPa, especially close to critical pressure. It is found that at a working pressure of 4000 kPa and mass flow rate ranging from 1 kg/s to 1.75 kg/s, the total heat transfer rate was independent of the mass flow rate.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In