Full Content is available to subscribers

Subscribe/Learn More  >

Thermodynamic Analysis of a Solar-Coal Hybrid Poly-Generation Process for Methanol Synthesis and Power Generation

[+] Author Affiliations
Tuantuan Xin, Cheng Xu, Gang Xu, Wenyi Liu, Yongping Yang

North China Electric Power University, Beijing, China

Paper No. POWER2018-7430, pp. V001T06A024; 9 pages
  • ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum
  • Volume 1: Fuels, Combustion, and Material Handling; Combustion Turbines Combined Cycles; Boilers and Heat Recovery Steam Generators; Virtual Plant and Cyber-Physical Systems; Plant Development and Construction; Renewable Energy Systems
  • Lake Buena Vista, Florida, USA, June 24–28, 2018
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5139-5
  • Copyright © 2018 by ASME


To advance the utilization of the solar energy and coal resources as well as improve the flexibility of coal-based power plant, an improved solar-coal hybrid system for methanol production and power generation is proposed and thermodynamically analyzed. In the proposed system, the concentrated solar energy at high-temperature is used for heating the coal gasification to produce syngas for methanol synthesis; the waste material and heat from coal-to-methanol process are efficiently recovered in the conjunct power generation system; and the surplus electric power is optionally used for methanol synthesis by electrolysis process during the off-peak period. Through employing the proposed system, the solar energy and electricity (optional) could be effectively converted into methanol as stable chemical energy together with a preferable overall system thermal efficiency. The thermodynamic analysis results showed that, the overall energy and exergy efficiencies reaches 48.6 and 47.3%, respectively; the equivalent solar-to-methanol conversion efficiency can soar to 66.2%; and the net electricity-to-methanol efficiency reaches 61.6% with the power load reducing from 48.7% to 31.0%.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In