Full Content is available to subscribers

Subscribe/Learn More  >

PID Control Design and Demonstration Using a Cyber-Physical Fuel Cell/Gas Turbine Hybrid System

[+] Author Affiliations
Bernardo Restrepo, Harry Bonilla

Universidad del Turabo, Gurabo, PR

Paolo Pezzini, Kenneth “Mark” Bryden

Ames Laboratory, Ames, IA

David Tucker

NETL, Morgantown, WV

Paper No. POWER2018-7346, pp. V001T04A002; 11 pages
  • ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum
  • Volume 1: Fuels, Combustion, and Material Handling; Combustion Turbines Combined Cycles; Boilers and Heat Recovery Steam Generators; Virtual Plant and Cyber-Physical Systems; Plant Development and Construction; Renewable Energy Systems
  • Lake Buena Vista, Florida, USA, June 24–28, 2018
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5139-5
  • Copyright © 2018 by ASME


The emphasis on traditional control in power systems has traditionally focused on the application of first order transfer functions to develop gains in distributed PI or PID control. The application of traditional PI or PID control in fuel cell turbine hybrid power systems for setpoint tracking or disturbance rejection during transient operation has proved to be challenging because the interaction and nonlinearities. In this work, a systematic approach to specifying ideal gains for PID control was established and then applied to hybrid systems using the cyber-physical emulation facility at the National Energy Technology Laboratory. Through testing on hardware, it was proved that the control variable response to actuator modulation was not first order. By developing second order transfer functions to specify gains, the response of the system was predicted as expected by simulation. Testing of a hot air bypass valve to control fuel cell cathode airflow setpoint tracking and disturbance rejection was effectively demonstrated with response behaviors as expected, rise times under 3.5 seconds, and overshoot predicted for the underdamped case.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In