Full Content is available to subscribers

Subscribe/Learn More  >

Progress on the Development of a Holistic Coupled Model of Dynamics for Offshore Wind Farms: Phase I — Aero-Hydro-Servo-Elastic Model, With Drive Train Model, for a Single Wind Turbine

[+] Author Affiliations
Z. Lin, D. Cevasco, M. Collu

Cranfield University, Cranfield, UK

Paper No. OMAE2018-77886, pp. V010T09A060; 9 pages
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 10: Ocean Renewable Energy
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5131-9
  • Copyright © 2018 by ASME


Currently, around 1500 offshore wind turbines are operating in the UK, for a total of 5.4GW, with further 3GW under construction, and 13GW consented. Until now, the focus of the research on offshore wind turbines has been mainly on how to minimise the CAPEX, but Operation and maintenance (O&M) can represent up to 39% of the lifetime costs of an offshore wind farm, due mainly to the high cost of the assets and the harsh environment, limiting the access to these assets in a safe mode.

The present work is a part of a larger project, called HOME Offshore (www.homeoffshore.org), and it has as aim an advanced interpretation of the fault mechanisms through a holistic multiphysics modelling of the wind farm.

The first step (presented here) toward achieving this aim consists of two main tasks: first of all, to identify and rank the most relevant failure modes within a wind farm, identifying the component, its mode of failure, and the relative environmental conditions. Then, to assess (for each failure mode) how the full-order, nonlinear model of dynamics used to represent the dynamics of the wind turbine can be reduced in order, such that is less computationally expensive (and therefore more suitable to be scaled up to represent multiple wind turbines), but still able to capture and represent the relevant dynamics linked with the inception of the chosen failure mode.

A methodology to rank the failure modes is presented, followed by an approach to reduce the order of the Aero-Hydro-Servo-Elastic (AHSE) model of dynamics adopted. The results of the proposed reduced-order models are discussed, comparing it against the full-order coupled model, and taking as case study a fixed offshore wind turbine (monopile) in gearbox failure condition.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In