0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Particle Transport in Horizontal Pipes Based on Three-Layer Modeling: Simulation and Experimental Study

[+] Author Affiliations
Johnny Petersen, Hardy Siahaan

International Research Institute of Stavanger (IRIS), Bergen, Norway

Milad Khatibi, Rune Wiggo Time

University of Stavanger (UiS), Stavanger, Norway

Paper No. OMAE2018-77656, pp. V008T11A061; 9 pages
doi:10.1115/OMAE2018-77656
From:
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5129-6
  • Copyright © 2018 by ASME

abstract

A new 1D dynamic model was developed to predict the liquid-particle flow behavior in a horizontal pipe. The dynamic model combines three effects: steady-state solutions, the Bernoulli effect (due to local accelerations), as well as the flow separation and re-circulation zone occurring at the lee-side of a dune. Experiments of liquid-particle flow were conducted in a medium-scale flow loop, and the results were compared with the dynamic model. Two high-speed cameras were used to measure the particle dune characteristics, mainly length and height of the dune, as well as the particles velocity. Particles were spherical glass beads with median diameter of 0.3 and 1.2 mm. Water was used as test fluid, and the flow was fully turbulent. It was found that the model captured the essential physics of particle transport for the measurements reported, such as prediction of pressure drop fluctuations, as a function of both space and time.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In