Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of Two-Phase Flow in an Oscillating Vertical Pipe

[+] Author Affiliations
Elinaldo Santos Silva

Consultant Engineer, Goytacazes, Brazil

Sergio N. Bordalo

University of Campinas, Campinas, Brazil

Paper No. OMAE2018-78323, pp. V008T11A044; 5 pages
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5129-6
  • Copyright © 2018 by ASME


Two-phase vertical flows are of utmost importance for petroleum production, since underground petroleum reservoirs produce oil and gas simultaneously, which must flow together upward to the sea floor through wells, and from these to the production floating units through suspended pipes (risers). Along the pipelines, the mixture of oil and gas may develop several flow patterns — such as bubble, slug, churn and annular flow. These physical configurations present specific characteristics that demand distinct modeling of the head loss as a function of the flow rate. The correct characterization of the flow patterns, under given operational conditions, is fundamental to the modeling of the dynamics of the flow and to the relation between head loss and flow rate. In the literature, most studies on the establishment of the flow patterns have been carried with water and air, and have been restricted to the case of static pipes, while production risers are in constant movement due to the action of waves, sea currents and the displacement of the floating production unit. In the present work, an experimental study of vertical two-phase flow of water and air is conducted with the oscillatory movement of a long and slender flexible vertical pipe of 8,0 m of length and 25,4 mm of diameter. The head loss is measured for different frequencies of oscillation. Comparisons are made between the static and oscillating pipe, with regard to the flow patterns and head losses. The effect of the frequency of oscillation is detected.

Copyright © 2018 by ASME
Topics: Pipes , Two-phase flow



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In