0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of Fine Water Plugging Technology With Coiled Tubing in High Water Cut Wells

[+] Author Affiliations
Jie Wang, Fujian Zhou, Lufeng Zhang, Fan Fan

China University of Petroleum, Beijing, Beijing, China

Hong Yang

Yanchang Petroleum Group Co. Ltd, Xi'an, China

Paper No. OMAE2018-78342, pp. V008T11A027; 7 pages
doi:10.1115/OMAE2018-78342
From:
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5129-6
  • Copyright © 2018 by ASME

abstract

Water logging problem in late production reservoir with abundant edge-bottom water and water-gas layer stagger is one of the main factors that lead to production wells stop flow. For the water plugging problem during gas well production, the common operation is coiled tubing through casing. So, coiled tubing technology without moving production string is explored.

X oilfield is located in Sichuan basin of China southwest and belongs to the origin of gas pipeline from Sichuan to China east. Its main gas producing area is carbonatite full of edge water and controlled by structural and lithology. The relationship between water and gas is complex and water-gas system is independent of different blocks and different layers. Because the main gas producing layer is close to the water layer, lots of gas producing wells stop spray for high water cut. At the meantime, the difficulty and risk of water plugging increases for its high depth of main gas producing layer and high temperature at the well bottom.

To solve the problem above, cement slurry system with the characteristics of high temperature and sulfur resistant and channeling preventing is developed. At the same time, the cement slurry system has low friction and high liquidity and is easy to flow through the coiled tubing. Besides, cement slurry pollution is reduced and the success rate of gas well produced water plugging is improved by the combination of coiled tubing and cementing process and the construction technology optimization, software simulation and laboratory evaluation is carried out. The key step is that log analysis of water and gas distribution is done first. Then, tubing-expansion bridge plug is placed under the water layer and the cement slurry is sent to the desired location. At last, coiled tubing is put down after cement solidification and gas production is recovered.

The measurement of coiled tubing and cement slurry system is positive for water plugging in gas wells with high depth and temperature. The oilfield test results show that daily gas production is improved largely and liquid production is reduced by 90% of 4 wells with high water cut through water plugging. Besides, operation cost is reduced and the pollution problem caused by produced water is also solved, which can provide certain significance for the same type wells need water plugging operation.

Copyright © 2018 by ASME
Topics: Wells , Tubing , Water

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In