0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigating the Effect of Wire Feed Rate and Wire Tension on the Corner and Profile Accuracies During Wire-EDM of Ti-6Al-4V

[+] Author Affiliations
Roan M. Kirwin, MD Rashef Mahbub, Muhammad P. Jahan

Miami University, Oxford, OH

Paper No. MSEC2018-6540, pp. V004T03A057; 10 pages
doi:10.1115/MSEC2018-6540
From:
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 4: Processes
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5138-8
  • Copyright © 2018 by ASME

abstract

Ti-6Al-4V (grade 5 titanium alloy) is one of the most widely used materials in aerospace applications including turbine blades for aerospace engines. Due to the difficulty of machining titanium alloys using conventional machining processes, wire-electro-discharge machining (wire-EDM) is used extensively for cutting titanium parts with complex geometries and profiles. The objective of this study is to investigate the effect of two important non-electrical parameters in wire-EDM, i.e. wire feed rate and wire tension, on the geometric corner and profile accuracies of the Ti-6Al-4V parts machined by wire EDM. A complex profile was designed for machining in two different thicknesses of titanium alloy using each set of experimental parameters. The complex part includes corners with 45°, 90° and 112.5°, as well as thin wall section for measuring the kerf accuracy. It was found that with the increase of wire tension, the corner accuracies at almost all the angles improved. however, too high wire tension caused inaccuracies by providing larger angles than the target values. The effect of wire tension was dependent on the thickness of the machined part. For thinner workpiece the results of the angles generated barely followed a trend, whereas for thicker part, the measured angles followed an excellent trend. The kerf accuracies were found to improve with the increase of wire tension for thin part, whereas for thick part the results of kerf width accuracies were inconsistent. In case of wire feed rate, it was found that comparatively lower settings of wire feed rates were favorable for machining thinner parts with enhanced corner accuracies. On the other hand, slightly higher wire feed rates provided better corner accuracies for thick part. Besides corner inaccuracy, profile undercuts and deviations from the machining paths were observed for lower wire tensions. Finally, it can be concluded that comparatively lower wire feed rate and higher wire tension provides improved corner and profile accuracies. however, for machining thinner sections using wire-EDM, the trends are not obvious.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In