0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Forces During Spot Finishing of Titanium Alloy Using Novel Tool in Magnetic Field Assisted Finishing Process

[+] Author Affiliations
Anwesa Barman, Manas Das

Indian Institute of Technology Guwahati, Guwahati, India

Paper No. MSEC2018-6352, pp. V004T03A050; 5 pages
doi:10.1115/MSEC2018-6352
From:
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 4: Processes
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5138-8
  • Copyright © 2018 by ASME

abstract

Magnetic field assisted finishing process is a nanofinishing process which uses magnetic field for precise control of finishing forces. Magnetorheological fluid mixed with diamond abrasive particles in base medium of glycerol, hydrofluoric acid, nitric acid, and deionized water is used as the polishing medium. The novel tool is a magnet fixture made of mu-metal which is used to hold the magnet during finishing. In the present experimental study, finishing at a spot on flat titanium alloy is carried out to analyze the forces involved in the finishing. Normal force is the main force responsible for the indentation by the abrasive particle on the workpiece surface. Tangential force helps in removing indented material. The measured normal force and tangential force during the spot finishing are 3.285 N and 0.43 N, respectively. The final surface roughness achieved after spot finishing is 10 nm from initial surface roughness of 200 nm. The percentage improvement in surface roughness is 95%.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In