Full Content is available to subscribers

Subscribe/Learn More  >

A Finite Element Approach to Calculate Temperatures Arising During Cryogenic Turning of Metastable Austenitic Steel AISI 347

[+] Author Affiliations
Steven Becker, Hendrik Hotz, Benjamin Kirsch, Jan C. Aurich, Erik v. Harbou, Ralf Müller

Technische Universität Kaiserslautern, Kaiserslautern, Germany

Paper No. MSEC2018-6541, pp. V004T03A036; 9 pages
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 4: Processes
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5138-8
  • Copyright © 2018 by ASME


In this paper an inverse method is presented to evaluate the inner workpiece temperature distribution during cryogenic turning of metastable austenitic steel AISI 347 utilizing a FE representation of the process. Temperature data during the experiments is provided by thermocouples and a commercial thermo-graphy system. A constant cutting speed at two varying feeds are investigated. Inverse parameter verification by aligning simulated and experimental data in a least squares sense is achieved. A heat flux from tool to workpiece as well as heat transfer coefficients for forced convection by air and by carbon dioxide as cryogenic coolant are identified for each set of cutting parameters. Rigid body rotation in the model is considered applying convective time derivatives of the temperature field. Unphysical oscillations occurring in regions of high Péclet numbers are suppressed utilizing a streamline-upwind/Petrov-Galerkin scheme.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In