0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Dislocation Density and Grain Size Evolution in Orthogonal Cutting of Pure Titanium Using Microgrooved Cutting Tools

[+] Author Affiliations
Han Wu, J. Ma

Saint Louis University, Saint Louis, MO

Shuting Lei

Kansas State University, Manhattan, KS

Paper No. MSEC2018-6473, pp. V004T03A027; 12 pages
doi:10.1115/MSEC2018-6473
From:
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 4: Processes
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5138-8
  • Copyright © 2018 by ASME

abstract

In this paper, a coupled Eulerian-Lagrangian (CEL) finite element model is developed based on FEM software package Abaqus to solve the evolution of the dislocation density and grain size simultaneously. This validated CEL FEM model is then utilized to investigate the effects of microgrooved cutting tools on the evolution of dislocation density and grain size in orthogonal cutting of commercially pure titanium (CP Ti). Microgrooved cutting tools are cemented carbide (WC/Co) cutting inserts with microgrooves on the rake face. The effects of microgroove width and microgroove convex width are investigated in terms of cutting force, chip morphology, dislocation density, and grain size. It is concluded that this CEL FEM model can capture the essential features of orthogonal cutting of commercially pure titanium (CP Ti) alloy using microgrooved cutting tools. It is also concluded that microgroove width and convex width have substantial influence on the dislocation density profiles and grain size profiles along the depth from the machined surface and the tool-chip interface, respectively. This conclusion provides insightful guidance for altering the surface integrity of the machined surface based on needs.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In